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ABSTRACT 

Title of Dissertation: Platelet-derived growth factor-BS stimulates fibronectin gene 

expression in cultured fibroblasts isolated from rat thoracic aorta 

ling Zhang. Doctor of philosophy. 1994 

Dissertation directed by: Chu-Shek La, Ph.D. 

Associate Professor of Physiology 

Department of Physiology 

Platelet-Derived Growth Factor (PDGF) and fibronectin are implicated in cell 

proliferation and matrix expansion. It is possible that PDGF stimulates cell proliferation 

via induction of fibronectin synthesis from fibroblasts . Fibroblasts isolated from rat 

thoracic aorta were used in these studies because they produce a large amount of 

fibronectin. Therefore. the role of POOF-BS in fibronectin gene expression in cultured 

fibroblasts was investigated. Northern blot analysis demonstrated that PDGF-BB induces 

fibronectin mRNA in a time-and dose-dependent manner. Elevated fibronectin mRNA 

levels were detected at 4 hours and peaked at 6 hours (120% increase, P<O.OOI) after 

PDGF-BB (20 ng/mI) treatment. The effects of actinomycin D and cycloheximide on 

fibronectin mRNA synthesis in the presence of PDGF-BB were examined. Actinomycin 

D blocked the fibronectin mRNA increase induced by PDGF-BB. Cycloheximide 

produced a greater increase in fibronectin mRNA levels. These results suggest 

transcriptional and translational control by PDGF-BB. Slot blot and western blot analysis 

demonstrated a 21% increase (P<O.OS) of fibronectin levels in the intracellular 
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compartment 8 hours after PDGF-BB (20 ng/mI) treatment and a 20% increase (P<O.O I) 

in the cell culture medium 12 hours after PDGF-BB (20 ng/mI) addition. PDGF-BB 

produced a dose-dependent increase of intracellular fibronectin levels and fibronectin 

secretion into the cell culture medium. Insulin-like growth factor-I (IGF-I) also regulates 

cell proliferation. Since PDGF and IOF-! stimulate cell proliferation individually, the 

interaction between PDGF-BB and IOF-I was examined. PDGF-BB acted synergistically 

with IOF-I on the stimulation of fibronectin mRNA (276% increase, P<O.OOl) and 

fibronectin levels (115% increase, P<O.OOI) after exposure of cell cultures to both growth 

factors (20 figlml each) simultaneously. These studies suggest that PDGF-BB may have 

a regulatory effect on fibronectin gene expression. The interaction between growth 

factors and matrix proteins may play a role in smooth muscle cell proliferation and 

extracellular matrix expansion. 
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SPECIFIC AIMS 

Hypertension and atherosclerosis are characterized by smooth muscle cell 

proliferation and extracellular matrix expansion. The molecular mechanisms causing these 

pathologic changes are not clear. This research will investigate the role of platelet

derived growth factor (PDOF) in stimulating fibronectin gene expression in rat thoracic 

aortic fibroblasts. The interaction between growth factors and extracellular matrix 

proteins may be responsible for the smooth muscle cell proliferation and extracellular 

matrix expansion. Specific aims of this research are to examine 

(1) whether PDGF-BB affects fibronectin mRNA levels in primary cultured 

fibroblasts isolated from rat thoracic aortae; 

(2) whether PDGF affects fibronectin levels; 

(3) the interaction of PDOF-BB and IGF-I on stimulating fibronectin gene 

expresslOn. 

This research will examine how PDGF-BB regulates fibronectin which could 

mediate cell proliferation and matrix expansion in the cardiovascular system. Further, it 

will help to reveal the molecular mechanisms of hypertension and atherosclerosis. 
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SIGNIFICANCE 

Hypertension and atherosclerosis, the two major forms of vascular disease in the 

United States and Western Europe, share a number of features. The frequency of both 

diseases increases with age. The risk of atherosclerosis is greatly increased in individuals 

with hypertension. Both diseases are characterized by smooth muscle cell proliferation 

and extracellular matrix expansion. In atherosclerosis, the central cellular feature is 

proliferation of smooth muscle cells in the arterial intima of larger arteries. As these 

smooth muscle lesions enlarge, lipid accumulates. thrombosis occurs, the lumen is 

narrowed, and patients die of infarction. In hypertension, smooth muscle cell proliferation 

or hypertrophy and extracellular matrix deposition in small arteries results in increased 

wall mass and a narrowed lumen. The small vessel change is thought by some to be the 

reason of the increased peripheral resistance that causes high blood pressure . This 

common role of accumulation of smooth muscle cells and matrix proteins suggests that 

control of smooth muscle cell proliferation and extracellular matrix expansion may be 

critical to both diseases. 

Smooth Muscle Cell Proliferation in Atherosclerosis and Hypertension 

Virchow (1856) recognized the presence of cell proliferation in atherosclerosis 

over a century ago. His view of the cellular events as a reaction to the accumulation of 

toxic materials in the vessel wall was largely neglected while research was directed at the 

equally important issue of lipid accumulation in lesions. This began to change in the 
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latter part of the 19605 and early 1970s. Experimental evidence in animals, and 

observations in humans. supported the idea that the initial step in lesion formation, prior 

to an increase in intimal lipids, was the formation of focal masses of proliferated smooth 

muscle cells in the intima (Ross et al. 1976, Parker et al. 1966, Haust et al. 1960). These 

observations began to lead to a possible understanding of the mechanism. 

The major cellular participants in atherosclerosis are monocytelmacrophages, 

vascular smooth muscle cells, T lymphocytes, platelets and endothelial cells. According 

to "the response to injury" hypothesis, endothelial cell dysfunction is perhaps one of the 

earliest events in atherosclerosis (Ross 1986b). Leukocyte adhesion to the damaged 

endothelium and subsequent infiltration into the arterial wall is followed by their 

activation and elaboration of various cytokines and growth factors. Among the factors 

released by these activated leukocytes are substances. such as POGF (Ross et ai. 1990), 

that have the potential to initiate the migration of medial smooth muscle cells into the 

neo-intima and their subsequent proliferation. During later phases of plaque formation, 

endothelial dysfunction may progress to endothelial cell death and detachment. Exposure 

of the underlying extracellular matrix leads to platelet microthrombus formation and 

degranulation with the consequential release of platelet associated growth factors and 

chemotactic agents. 

The history of our understanding of the role of smooth muscle cell proliferation 

in hypertension is less clear. Arteriolar hypertrophy in hypertension was described as 

early as 1868 by Johnson, and the concept that these thickened vessel walls might 

increase peripheral resistance was offered by Ewald in 1877. These morphological 

observations meant little until physiologists began to understand the central role of smooth 
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muscle contractility in controlling resistance to flow through small arteries. Because only 

a small proportion of cases of hypertension is readily explained on the basis of classical 

renal , adrenal, or sympathetic neural mechanisms (Folkow 1982), abnormal function of 

the arterial smooth muscle cell must play a central role. The most obvious is that 

hypertension results from a general change in smooth muscle contractility or 

responsiveness. 

Hypertension IS a major risk factor for strokes, myocardial infarction, and 

peripheral vascular disease (Kannel and Sorlie 1975). Hypertension can accelerate 

atherosclerosis in experimental animal models as well as in human (Chobanian 1983, 

McGill et al. 1985). Hypertension causes a large number of functional and morphological 

alterations in the vessel wall, including hypertrophy and increased turnover of endothelial 

cells (Chobanian 1983, Haudenshild et al. 1980), hypertrophy, polyploidy, and intimal 

migration of medial smooth muscle cells (Chobanian 1983, Lichtenstein et al. 1986), 

adhesion and subendothelial migration of blood mononuclear cells (Haudenshild et al. 

1980), and extracellular matrix accumulation (Chobanian 1983). The molecular 

mechanisms whereby increased intravascular pressure affects the vessel wall in vivo are 

unknown. However, studies using cultured cells have indicated that a number of different 

polypeptide growth factors can influence vascular cell function and proliferation. Several 

growth factors have been shown to be made in vitro by endothelial cells (Ross et ai. 

1986a, Sitaras et ai. 1987, Gospodarowicz et al. 1987), smooth muscle cells 

(Gospodarowicz et al. 1987, Majesky et al. 1988, Winkles et al. 1987), and blood 

mononuclear cells (Ross et ai. 1986a, Sporn el al. 1987. 1988). Multiple effects of 

different growth factors on these cell types led to suggestions that complex autocrine and 
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paracrine control mechanisms exist in vivo in vascular tissue (Ross el al. 1986b, Sporn 

et al. 1988). 

Growth Factors and Cell Proliferation 

Growth factors are a group of polypeptides which appear in both tissue and 

blood. The role of polypeptide growth factors in stimulating the proliferation of cells and 

in maintaining their viability has been increasingly appreciated. Growth factors also play 

roles in differentiation, development, chemotaxis and activation of inflammatory cells, 

tissue repair and disease. Growth factors differ from hormones in that they usually act 

through paracrine and autocrine mechanisms. However, growth factors have been 

identified in plasma and may act as hormones as well. Growth factors are synthesized 

and secreted by both normal and transformed cells. Abnonnal secretion of growth factors 

by nonnal cells probably results in disease characterized by a proliferative cellular 

response or by fibrosis. 

Platelet-derived Growth Factor 

Platelet-derived growth factor (PDGF) was first identified as a factor in platelets 

which allowed the growth of fibroblasts in vitro (Kohler el af. 1974). Further 

characterization of this factor demonstrated that it is a potent mitogen for all cells of 

mesenchymal origin, including smooth muscle cells and glial cells. Subsequent 

purification and chromatographic analysis demonstrated the presence of two closely 

related proteins, termed PDGF-I and PDGF-II (Deuel et af. 1981). These proteins were 

found to be of similar size and amino-acid composition and to possess similar mitogenic 
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properties, but differed only in the extent of glycosylation. PDGF-l is about 30 kD and 

contains about 7% carbohydrate. PDGF-II is about 28 kD and contains about 4% 

carbohydrate. 

The structure and isofonns. PDGF is a dimeoc polypeptide consisting of two 

disulfide linked chains, termed A and B (Johnsson el at. 1984). The A and B chains of 

PDOF are 56% identical to each other throughout the mature PDGF molecule (Betsholtz 

el ai. 1986). The B-chain of PDGF is encoded by the c-sis protooncogene which is the 

normal cellular homologue of the transforming oncogene of the simian sarcoma virus 

(Waterfield er al. 1983. Doolittle er al. 1983. Iohnsson er al. 1984). The human A chain 

is encoded on chromosome 7 (Betsho ltz et ai. 1986), while the human B chain is encoded 

on chromosome 22 (Swan et al. 1982), and these two genes are often expressed 

independently of each other (Alitalo er al. 1987. Papayannopoulou er al. 1987). 

Independent regulation of expression of the A and the B chains allows the production of 

at least three different PDGF-related molecules, the A-A and the B-B homodimers, and 

also the A-B heterodimer. Other modifications, including differential proteolysis and 

glycosylation can potentially give rise to an entire spectrum of PDGF-related proteins. 

Human platelet PDGF is thought to be an A-B heterodimer (Stroobant et al. 1984). The 

presence of multiple forms of closely related molecules raises the possibility that the 

individual PDGF-related proteins are tailored to specific physiological roles. 

Biological activity. PDGF is an extraordinari ly potent mitogen for most 

mesenchymally derived connective-tissue-forming cells. After exposure to fibroblasts, 
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smooth muscle, or glial cells, PDGF induces increased thymidine incorporation within 12 

to 16 hours (maximal by 24 hours) and leads to cell doubling between 30 and 36 hours 

(Ross et at. 1987). Functionally, PDGF also appears to play a significant role in a 

number of other biological processes, including vasoconstriction, chemotaxis. stimulating 

collagen and collagenase synthesis, and calcium mobilization (Beck et al. 1986, Hart el 

aZ. 1988, Chan et aZ. 1987, Berridge et al. 1984, Rose et aZ. 1986a). 

The POOF receptors. The PDGF receptor was first identified as a 180- to 190-

leD membrane glycoprotein by the covalent cross-linking of 'HI-Iabeled PDGF CAB 

heterodimer form) to intact cells (Glenn et al. 1982) or to membrane preparations 

(Williams et al. 1984). The receptor can be found on vascular smooth muscle cells, 

fibroblasts, and glial cells, but is not present on endothelial cells or on most hematopoietic 

cells. The PDGF receptor belongs to a subfamily of tyrosine kinase receptors that 

includes the insulin receptor, epidermal growth factor receptor, colony-stimulating factor-I 

receptor, and insulin-like growth factor receptor. The structure of the PDGF receptor is 

very close to that of the CSF-I receptor (Rossel et ai. 1987) and c-kil protooncogene (Qiu 

el aJ. 1988) (Fig. 1). The most striking structural features are the organization of the 

extracellular region into five immunoglobulin-like domains, D, to Ds. The other 

distinctive characteristic of this class of receptors is that there is a large region that 

interrupts the coding sequence of the tyrosine kinase domain (Yarden et af. 

1986). This large region is called the "kinase insert" (Kl) region of the receptor. The 

Kl region of the PDGF receptor, CSF-I receptor, and c-kit protein are different in specific 

sequences and length, but are found at precisely the same location within their respective 
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Figure 1. The structure of PDGF receptor (Williams 1989) 

kinase domains. It is possible that the KI sequences represent a structural "excursion" 

from the sequences that actually form the active site of the kinase. The cytoplasmic 

region contains sequences homologous to other tyrosine kinases. The other features of 

the PDGF receptor are the presence of a single membrane-spanning segment and a 

"juxtamembrane" region that connects the first kinase domain with the transmembrane 

domain (Yarden et ai. 1986). Little is known about the juxtamembrane region except 

that its length of approximately 47 amino acids is highly conserved among the receptor 

tyrosine kioases. The carboxyl-terminal domain of the PDGF receptor is distinctive in 

sequence but has no easily predictable structure, and its function is also unknown. 

It has been demonstrated that there are two distinct PDGF receptors. (t-PDGF 

receptor (a-PDGFR) and B-PDGF receptor (B-PDGFR). They are coded by different 



genes, and usually expressed at the same time (Matsui et ai. 1989). The PDOF isoforms 

bind with different affinities to two distinct cell surface receptors (Fig. 2). The PDGF 0:-

A-chain 

AA 
B-chain 

SS 

HPOGF-aR HPOGF-,BR 

(31 %) 
10 

Inter -Kinase 
Domain 
(27%) 

COOH-terminel 
(28%) 

00 

Figure 2. The PDGF isoforms bind with two receptors (Matsui 1991) 

receptor binds all three isoforms with high affinity. while the POGF B-receptor binds only 

PDOF-BB with high affinity and PDGF-AB with lower affinity (Claesson-We!sh et al. 

1988. 1989, Ostman et al. 1989). The amino acid identity between the two receptors 

varies from 30% in the extracellular part to 87% in the most N-terminal part of the 

tyrosine kinase domain (Nister et al. 1991). Binding of PDGF to the extracellular part 

of either receptor type leads to dimerization of receptor molecules, followed by activation 

of the receptor tyrosine kinase (Heldin et al. 1989, Bishayee et al. 1989. Kanakaraj et ai. 
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1991 , Seifert el al. 1989). The functional difference between the «-and 6-PDGF receptors 

is important to define their distinct physiological roles (Hammacher et a1. 1989). The 

ratio of the two receptors might vary from one cell type to another or according to the 

proliferation and differentiation stages . Moreover, the two receptors might trigger a 

partially distinct down-stream pathway to transduce the ligand signal. Additional 

regulatory flexibility may be provided by the different ability of three PDGF isoforms to 

interact with the two receptors. This regulatory flexibility may be important to reveal the 

wide spectrum specificity of tissues and cell s whose function is differentially controlled 

by PDGFs. 

After binding of PooF to its receptor, a number of immediate changes occur 

within the cell (Williams 1989). These include activation of tyrosine kinase, hydrolysis 

of phosphatidylinositol (PI) (Habenicht <I al.1986), alterations of cellular pH (L' Allmain 

el al. 1984), increase in cytosolic calcium levels (lves et a1. 1987), a dramatic change in 

the cytoskeleton (Bockus el af. 1984), increased expression of a group of genes (Kelly 

el at. 1983, Greenberg <I al. 1985, Sukhatme el at. 1987, Almendral el al. 1988, Cochran 

et af. 1983), elevation of cellular cyclic adenosine monophosphate (cAMP) (Rozengurt 

et al. 1983), and internalization and degradation (downregulation) of the receptor. 

Although all these changes occur, none can be related directly to the mitogenic effects of 

PDGF (Williams 1989). 

Several PDGF receptor substrates have recently been identified. These include 

phospholipase C-y (PLCy) (Morrison el at. 1990), GTPase-activating protein (GAP) 

(Molloy <I at. 1989, Kaplan <I al. 1990), and the 85 kDa subunit of the 

phosphatidylinositol 3-kinase (Carpenter el a1. 1990). Each has been shown to undergo 
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rapid tyrosine phosphorylation and/or physical association with PDOF receptors in 

response to PDOF triggering (Morrison et af. 1990, Molloy et af. 1989, Carpenter et at. 

1990, Kaplan ef at. 1990, Kazlauskas ef at. 1990). PLCy hydrolyzes phosphatidylinositol 

4,5-biphosphate into two second messengers, 1,2-diacrylglycerol and inositol 1,4,5-

triphosphate. The former activates protein kinase C, and the latter promotes the release 

of Ca2
+ from intracellular stores (Berridge 1987). GAP enhances hydrolysis of ras-OTP 

to ras-GDP which normally inactivates ras function (McCormick 1989, Trahey 1987). 

Phosphatidylinositol 3-kinase phosphorylates the inositol ring of phosphatidylinositol at 

the D3 position, but there is yet no clue as to the biological functions of such metabolites 

(Auger ef al. 1989, Whitman ef al. 1988). 

The Role of PDGF in Smooth Muscle Cell Proliferation 

PDGF is a mitogen and chemoattractant (Grotendorst et ai. 1981, Albini et al. 

1988) for vascular smooth muscle cells in vitro. Thus. it may be involved in at least two 

important aspects of atherogenesis--the proliferation of smooth muscle cells and their 

migration into the intima of the vessel wall (Schwartz et af. 1986, Ross 1986b). PDGF 

would be released into the vessel wall following platelet adherence and degranulation in 

vivo. Also, endothelial cells (Barrett et af. 1984, Gay and Winkles 1990), smooth muscle 

cells (Majesky ef at. 1988, Sjolund ef at. 1988, Hosang and Rouge 1989), and activated 

blood monocytes (Martinet ef al. 1986) in culture produce PDGF. RNA gel blot (Barrett 

and Benditt 1988) and in situ (Wilcox et a1. 1988) hybridization studies have 

demonstrated that PDGF mRNA is expressed by vascular cells in normal human vessels 

and in atherosclerotic plaques. In addition, Ross et al. (1990) detected PDGF B-chain 

II 



protein III macrophages during all stages of atherogenesis. Therefore, one may 

hypothesize that PDGF could play a significant role in the hyperplastic response 

characteristic of atherosclerosis and hypertension. 

Smooth muscle cells isolated from the intima adjacent to regions of endothelial 

cell damage displayed 10 times the PDGF concentration of those taken from the media 

of uninjured arteries (Walker et al. 1986). There is also evidence that the rapid 

proliferation of smooth muscle cells in vitro was associated with endogenous PDGF-like 

protein synthesis, and smooth muscle cell phenotypic modulation (Nilsson et al. 1985). 

In vitro studies of human smooth muscle cells have shown that cells derived from 

the atheromatous plaques can significantly stimulate cultured smooth muscle cell growth. 

Some of this stimulatory effect can be attributed to PDGF because the addition of 

antibodies to PDGF reduced, but did not eliminate, the increased growth rate (Libby el 

al. 1988a). Other substances such as interleukin-l, fibroblast growth factor or insulin-like 

growth factor may have contributed to the mitogenic potential of the plaque extract 

(Libby et al. 1988b. Winkles et al. 1987. Clemmons et at. 1985b). These and other 

investigations found that cells derived from atheromatous plaques synthesized detectable 

quantities of PDGF mRNA (Libby et al. 1988a, Barrett et at. 1987, 1988). 

Examination (using in situ hybridization) of human tissue removed during surgery 

has revealed the cells that have the potential to produce PDGF in vivo (Wilcox et al. 

1990). Almost all cell types of the intima derived from the atheromatous plaques gave 

a positive response to either mRNA for PDGF-A, PDGF-B or both. Localization of 

PDGF receptors within the intima coincide with those cells that synthesize PDGF (wilcox 

et al. 1990). 
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PDOF receptors are expressed at increased levels in atherosclerotic plaques 

(Rubin el af. 1988). This expression was specifically on the smooth muscle cell within 

the intima and was not found in the media, either adjacent to or distant from the lesion. 

The increased PDGF receptor expression was associated mainly with areas of increased 

density of active T cells and macrophages. Rubin et al. hypothesized that increased 

expression of PDGF receptors is a result of the presence of these cells (Rubin el af. 

1988). 

Experiments demonstrated angiotensin II and «-adrenergic stimulation can 

stimulate PooF A-chain gene expression in cell cultures and experimental animals 

(Naftilan el af. 1989. Majesky et aJ. 1990). Receptor research also demonstrated that 

deoxycorticosterone acetate (DaCA)/salt hypertension induced a threefold increase in 

aortic steady-state PDGF B-receptor mRNA levels (Sanani ef af. 1991). Aortic PDGF 

6-receptor expression also was higher in spontaneously hypertensive rats (SHRs) (Sarzani 

et al. 1991). All evidence suggests that PDGF is involved in the paracrine/autocrine 

regulation of smooth muscle cell proliferation of atherosclerosis and hypertension. 

The Role of PDGF in Fibroblast Proliferation 

PDGF is a potential mediator of fibroblast proliferation (DinareJlo 1988, 

Shimokado et al. 1985). Experiments have demonstrated that PDGF can cause rabbit 

papillary fibroblast (Knecht ef af. 1991 ), human synovial fibroblast (Butler ef af. 1989), 

and human skin fibroblast proliferation (Raines et ai. 1989; Bonner et ai. 1990). In 

human skin fibroblasts, the first increase in rH]thyrnidine incorporation in response to 

PDGF-AA, PDGF-BB and PDGF-AB was seen at 16 hours and was maximal at 24 hours. 
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Maximal [lH]thymidine incorporation, detected at 24 to 26 hours in response to PDGF

BB, was approximately 6 times that seen in response to PDGF-AA. The human dermal 

fibroblasts have both types of POOF receptors (Smits et al. 1992), and there are more 

PDOF-BB binding sites than PDGF-AA binding sites (Raines et at. 1989). 

PDOF is related to many proliferative di sorders of fibroblastic origin. Smits et 

at. (1992) using immunohistochemical and in situ hybridization techniques found that high 

expression of PDOF p-receptor mRNA and protein was found in malignant tumors, and 

also in some benign lesions. such as dermatofibroma. In contrast, high expression of 

POOF (X-receptor mRNA was only found in fully malignant lesions, such as malignant 

fibrous histiocytoma. These data indicate that an autocrine growth stimulation via the 

PDGF Jl -receptor could occur in an early phase of tumorigenesis, and may be a necessary 

but insufficient event for the progression into fully malignant human connective tissue 

lesions. 

Insulin-like Growth Factors 

Insulin-like growth factors were discovered in 1957 by Salmon and Daughaday 

when it was observed that rat serum contained a growth hormone-dependent factor(s) 

capable of inducing the incorporation oe's into cartilage (sulfation factor activity, SFA) 

(Salmon et al. 1957). Investigators in 1963 described factors isolated from human serum 

that had insulin-like effects on muscle and adipose tissue and were not suppressed by the 

addition of insulin antiserum (nonsuppressible insulin-like activity, NSILA) (Froesch, et 

al. 1963). In the 1960s, studies by Temin and others indicated that cell proliferation in 

some cell lines was dependent on the presence of specific factors in serum, whereas in 
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other lines the cells produced their own growth-promoting substances. One such activity 

was tenned "multiplication-stimulating activity (MSA). When it later became apparent 

that all three of these activities represented a similar group of substances with a much 

wider biological activity, the workers in the field agreed to introduce the term 

somatomedin in 1972 (Daughaday et af. 1972). It was not until 1978 that any member 

of this family was chemically characterized and its primary structure determined. 

Rinderknecht el af. successfully purified NSILA from a Cohn fraction of human plasma, 

resolving this activity to be due to two biologically active peptides that they termed 

insulin-like growth factor-I (IG1'-I) and IGF-II (Rinderknecht et al. 1976, 1978a, b). 

The structure of IOF-1. IGF-I is a single chain peptide, 70 amino acids in length, 

with 3 intra-chain disulfide bridges (Rinderknecht et al. I 978a, b). As with pro-insulin, 

regions of this growth factor peptide may be delineated into four domains, A, B, C and 

0 ; the A and B domains are very similar to the corresponding domains of pro-insulin, 

with which they share 43% homology. IGF-I has a similar tertiary structure to pro-insulin 

(Blundell et al. 1983). The receptor binding site of IGF-I is near the end of its B domain 

and the amino terminal end of the B domain is involved in binding IGF binding proteins 

(IGF-BPs) (Sheikh et al. 1987), while the A domain appears to be involved in the 

mitogenic response (Cascieri et ai. 1988). 

The IGF binding proteins. IGFs circulate in blood bound to one of a number of 

binding proteins. IGF-BP3 (IGF-BP53), which accounts for approximately 80% of the 

total binding capacity, is present as a glycosylated 150 kDa binding complex in human, 
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rat and porcine serum (Baxter 1988, Zapf ef af. 1988, Oopinath ef af. 1989). The 150 

kDa complex appears to represent a stable reservoir for the IGFs and its plasma 

concentration is dependent on levels of circulating growth hormone (Zapf et af. 1979, 

1980). IOF-BPI (IOF-BP28), the other major circulating IOF-BP, is found as a 25.3 leDa 

species in plasma, and represents an unglycosylated, growth hormone-independent 

component. Other IGF binding species are found in serum, with molecular weights 

ranging from 18 to 160 kDa. These are thought to represent post-translational 

modifications of IOF-BP3 (Hossenlopp ef af. 1986, Hardouin ef al. 1987) and IOF-BPI 

(Koistinen ef al. 1986, Baxter ef af. 1987, Lee ef al. 1988). 

The IGF-I receptor. The IGF-I receptor is structurally and functionally very 

similar to the insulin receptor (Ullrich et at. 1986) (Fig. 3) . The functional receptor is 

a 300-350 leDa dimmer, each half consisting of one ~ (130 leDa) and G subunit (95 leDa) 

which are disulfide linked. The a; subunits form the major part of the extracellular 

domain, and are involved in ligand binding. The B subunits contain the transmembrane 

region and an intracellular tyrosine kinase catalytic domain, which shows 84% homology 

with the insulin receptor. Ligand binding is followed by autophosphorylation of tyrosine 

residues on the G subunit. Although IOF-I, IOF-II and insulin all bind to the IOF-I 

receptor, IGF-Il binds with lower affinity than IGF-I and insulin with lower affinity than 

IOF-II (Steele-Perkins ef al. 1988). The mitogenic effect of insulin was mediated by the 

IGF-I receptor: an anti-IGF-I receptor monoclonal antibody reduced the insulin and IGF-I 

induced mitogenic effect. whereas an anti-insulin receptor antibody was without 

significant effect (Banskota ef al. 1989a, b). 
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Figure 3. The structure of IGP-I receptor (Ferns et aZ. 1991a) 

Biosynthesis and biological effects. The liver is the primary site of IGF-I 

synthesis in humans and rats (Schwander et ai. 1983, Scott et ai. 1985, Schimpff et ai. 

1980). IGF-I has also been produced in culture by fibroblasts from both humans and rats 

(Atkinson, el al. 1980; Adams el al. 1983, Clemmons el aZ. 1981a). In fact, the rate of 

IGF-I production by adult fibroblasts (50 nglIO'cells/48hrs) is similar in magnitude to that 

for hepatocytes. However, that these cells represent a major source of IGF-I in vivo is 

speculative (Scott, el aZ. 1985). A variety of other organs including kidney, lung, 

pancreas, testes, neural tissue and heart may contribute to the circulating levels of IGF-I 

(D'Ercole el al. 1984, Sara et al 1982). 

The two main biological actions of the IGFs may be summarized as an insulin-
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like metabolic action and a growth-promoting action. Both IGF-I and IOF-II stimulate 

DNA synthesis and cell proliferation. IGFs are involved in embryonic development 

(D'Ercole et al. 1980), angiogenesis (Hansson et ai. 1989), tumorigenesis (Gray et ai. 

1987, Tricoli et al. 1986, Hoppener et ai. 1988), neural function (Tannenbaum et al. 1983, 

Mulholland ef al. 1988), and wound healing (Hansson ef af. 1987, Rappolee ef al. 1988) . 

The Role of IGF-I in Hypertension and Atherosclerosis 

Although there is no definitive proof that the IGFs play a major role in 

atherosclerosis and hypertension, there is mounting circumstantial evidence that they do 

so. Most of the cell types implicated in these processes are capable of expressing IGF-I, 

IGF-I receptor, IGF-BPs. or a combination of these proteins. Serum and platelets contain 

a high proportion of mitogenic activity (>50%) that can not be attributed to PDGF (Ferns 

et al. 1991b). It follows, therefore, that platelets contain other potent mitogens that may 

contribute to intimal cell proliferation. Moreover, arterial injury is accompanied by a 

rapid and long-lasting induction of IGF-I mRNA expression (Cercek et al. 1990), 

suggesting an autocrine or paracrine role for IGF-I in the vascular response to injury. 

Vascular endothelial cells have been shown to have receptors for IGF-I, using a 

modified Langendorff perfused heart system, and in vitro (Bar et al. 1984, 1988). 

Hansson et al. (1989) showed that immunoreactive IGF-I was expressed by endothelial 

cells following injury. Receptors for IGFs have been demonstrated on vascular smooth 

muscle cells in vivo and in vitro (Bornfeldt et al. 1988, Cascieri et al. 1986, lialal et al. 

1985). In vitro IGF-I itself is not a good mitogen for smooth muscle cells. But IGF-I 

acted additively or synergistically with other growth factors, such as PDGF, fibroblast 
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growth factor (FGF) and epidermal growth factor (EGF). on induction of mitogenic 

response and receptor expression (Clemmons et ai. 1984, 1985b, Banskota et ai. 1989a, 

Pfeifle el al. 1984, 1987). The gene for the human IGF-I receptor is expressed by 

fibroblasts (Rosenfeld 1982). Both fibroblasts and smooth muscle cells can synthesize 

IGF-I endogenously (Clemmons el al. 1981 b, 1985" b, Weidman el al. 1979). 

The recent cloning of the genes for both IGFs has permitted investigation of 

tissue IGF expression by northern blotting and in situ hybridization. A possible autocrine 

role for IGF-I in the ral aorta has been demonstrated. IGF-I mRNA was detected in the 

aortic media by in situ hybridization and northern analysis (Sarzani et al. 1989). Cercek 

et ai. ( 1990) found that balloon catheter de-endothelialization of the rat aorta results in 

a rapid and sustained elevation in IGF-I mRNA. The peak response was observed at 7 

days, though expression remains above basal levels beyond 14 days. 

Although PDGF is one of the major platelet associated mitogens, other potent 

mitogens are also present. Karey et al. (1989) have purified and characterized human 

platelet derived IGF-I. Thus platelet adherence and degranulation at sites of anerial de

endothelializations would be expected to result in the release of high local concentrations 

of IGFs. which may act on cells with the vessel wall. or affect the function of the 

platelets themsel ves. 

Extracellular Matrix and Cell Proliferation 

Most cells in multicellular organisms are in contact with an intricate meshwork 

of interacting, extracellular macromolecules that constitute the extracellular matrix. These 

versatile protein and polysaccharide molecules are secreted locally and assemble into an 
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organized meshwork in the extracellular space of most tissues. Until recently, the 

vertebrate extracellular matrix was thought to serve mainly as a relatively inert scaffolding 

that stabilized the physical structure of tissues. But now it is clear that the matrix plays 

a far more active and complex role in regulating the behavior of the cells that contact 

it- influencing their development, migration, proliferation, shape. and metabolic 

functions. The macromolecules that constitute the extracellular matrix are secreted by 

local ceUs, especially fibroblasts, which are widely distributed in the matrix. Two of the 

main classes of extracellular macromolecules that make up the matrix are the collagens 

and the polysaccharide glycosaminoglycans. 

The noncollagen glycoproteins of the extracellular matrix have been relatively 

neglected until recently. A good deal is now known about fibronectin. Fibronectin first 

attracted attention when it was discovered to be present in greatly reduced amounts on 

the surface of fibroblasts derived from tumors compared to nonnal fibroblasts (Vaheri et 

al. 1975, 1976, Olden e l af. 1977). 

Fibronectin 

Fibronectin was first isolated from human plasma by Morrison et ai. in 1948 and 

tenned" cold-insoluble globulin". There are two type fibronectins--cell surface (cellular) 

fibronectin, and plasma fibronectin. Cell surface fibronectin is a major constituent of the 

cell surface of many cultured cells and has a subunit molecular weight of between 

200,000 and 250,000 (Hynes 1976, Yamada el al. 1976, Mosesson 1977, Grinnell 1978). 

Plasma fibronectin is a dimeric glycoprotein with subunit polypeptides of 200,000 to 

220,000 that circulates in vertebrate blood (Morrison et al. 1948, Mosesson et al. 1970, 
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1975, Mosher 1975, Iwanaga et al. 1978). 

The structure of fibronectin. The fibronectin molecule is a dinuner: it consists 

of two similar subunits which are joined at one end by disulfide bonds (Fig. 4). The 

FIBRIN COLLAGEN CELLS HEPARIN FIBRIN 

t t t t t 

.. ; 

Figure 4. The structure of fibronectin (Hynes 1986) 

protein chain of each subunit forms an elongated structure 60 to 70 nanometers long and 

two to three nanometers thick; that structure in tum is subdivided into a series of smaller 

domains. within each of which the protein chain is tightly folded. Fihronectin is produced 

mainly by fibroblasts (Ruoslahti et al. 1974). Endothelial cells (Stenmam et al. 1978) 

and smooth muscle cells (Stenmam et al. 1977) also can synthesize fibronectin. 

Fibronectin has been implicated functionally in the regulation of several cellular precesses, 



including adhesion, differentiation, motility and transfonnation (Mosher 1989, Hynes 

1990). 

The structure of the fibronectin polypeptides varies somewhat depending on the 

eeHular source of the protein. These variations are due to alternative splicings of the 

fibronectin mRNA (Ruoslahti 1988). The biological significance of the alternative 

splicings is not known. But they may affect the functions of fibronectin. The site in 

fibronectin that promotes cell attachment is in the middle portion of the fibronectin 

polypeptide. This segment contains the sequence Arg-Gly-Asp (RGD), the recognition 

of which. in surface-bound fibroneclin , results in the attachment of the cells to that 

surface. Main Heparin-binding site, another important binding site for cell attachment, 

is located near the COOH-terminus of the fibronectin polypeptide (Ruoslahti 1988). 

Cells interact with fibronectin at the RGD cell attachment site and at the heparin

binding sites. The specificity of the interaction seems to come from the RGD site, while 

the binding at the heparin-binding site plays an augmenting role. The RGD site is 

recognized by the RGD-directed receptors (Ruoslahti et aI , 1986, 1987) that belong to the 

integrin superfamily of proteins (Hynes 1987), while cell-surface proteoglycans bind to 

the heparin-binding sites (Rapraeger el al. 1987). 

Fibronectin receptors. The mammalian fibronectin receptors and other RGD

directed receptors are belonging to the integrin receptor family . Integrin receptors are 

typically heterodimers of two subunits IX and P (Ruoslahti el al. 1987, Pytela et al. 1985, 

1986) (Fig. 5). The IX subunits consist of two polypeptides disulfide-linked to one 

another. The P subunit is a single polypeptide with a molecular weight of about 140,(X)() 

22 



23 

cr subunit 

J3 subunlt 

Figure 5. The structure of integrin receptor (Ruoslahti 1988) 

(Ruoslahti 1988). Both subunits are transmembrane proteins. In the a: subunit, the 

smaller polypeptide anchors the subunit to the membrane. The larger ex 

subunitpolypeptide contains several short sequences homologous to known Ca2
• -binding 

sites in other proteins. In the p subunit, a segment with a high disulfide content is shown 

as bends in the polypeptide. Both subunits are thought to participate in the binding of the 

,Arg-GLy-Asp cell attachment site of fihronectin. 

The Role of Fibronectin in Cell Proliferation 

Vascular complications of several diseases are associated with changes in the 

extracellular matrix and accompanying intracellular changes in vascular cells (Thy berg 

et al. 1990). Since interactions between protein of the extracellular matrix and cell 

receptors, called integrins, are known to influence cell structure, it is plausible that 



changes in the expression of components of the extracellular matrix could have a 

causative role in the development of the resulting vascular lesions. 

Histochemical studies have documented the presence of fibronectin In aortic 

tissue, and changes in fibronectin con lent have been reported in different disease states, 

such as atherosclerosis. hypertension and diabetes (Jensen et at. 1983, Rasmussen el at. 

1989. Orelhov et al. 1984. Smith et al. 1986. Phan-Thanh et al. 1987. Stenman et al. 

1980). A study by Glukhova et al. (1989) showed that different alternately spliced forms 

of fibronectin are selectively localized in the intima and media, and following either 

balloon injury to the rat aorta or in human aortic atherosclerotic lesions, a selective 

accumulation of an alternatively spliced form of fibronectin was found within the intimal 

lesion. A study has shown that steady-state mRNA levels for rat aortic fibronectin 

increased several-fold in deoxycorticosterone acetate (DOC)/salt-treated and angiotensin 

II-infused rats and in the spontaneously hypertensive rat (SHR) (Takasaki 1990). There 

was a three to sixfold increase in fibronectin biosynthesis by aortic rings taken from rats 

treated with deoxycorticosterone/salt (Saouaf et al. 1991). Interactions between 

fibronectin and cultured vascular smooth muscle cells induced a phenotypic change from 

a contractile to synthetic state that is a prerequisite for the cellular proliferation (Charnley

campbell et at. 1979, Thyberg et al. 1983). Smooth muscle cells from atherosclerotic 

lesions of human arteries, as well as those from experimental intimal thickening in animal 

arteries, express the synthetic or fibroblast-like phenotype (Dilley et al. 1987, Nilsson et 

at. 1986, Ross 1986b, Schwartz et at. 1986). In vivo, a similar change in the 

differentiated properties of the smooth muscle cells appears to be one of the initial events 

in the development of an atherosclerotic lesion (Ross et at. 1986b, Schwartz 1986). 
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Vascular lesions are a major complication of diabetes. The vascular lesions also 

are characterized by smooth muscle cell proliferation. Increased biosynthesis and 

processing of fibronectin in fibroblasts from diabetic mice (Phan-Thanh el al. 1987) also 

suggest that the smooth muscle cell changes that occur during hypertension and 

atherosclerosis may be due to fibronectin-smooth muscle cell interactions. These findings 

support the hypothesis that fibronectin is involved in the vascular smooth muscle 

autocrine and/or paracrine regulation in hypertension and atherosclerosis. 

PooF May Affect Cell Proliferation by Fibronectin 

As previously indicated. both PDGF and fibronectin are involved in proliferation 

of vascular smooth muscle cells. Are there any relationships between PDGF and 

fibronectin? Because the cell response elicited by PDGF is very similar to the effects of 

fib ronectin on cell proliferation, it is reasonable to consider the possibility that PDGF may 

affect cell proliferation by induction of fibronectin. A few reports have suggested 

that PDGF was able to stimulate fibronectin gene expression (Blatti et al. 1988, Allen~ 

Hoffmann et af. 1990). Human dermal fibroblasts transfected with a human c-sis cDNA 

(coding for the platelet-derived growth factor B-chain) increase fibronectin levels and 

gene expression (lO-fold) relative to control. It was demonstrated that one of the 

biological functions of PDGF B-chain isoforms is to modulate fibronectin synthesis 

(Allen-Hoffmann et al. 1990). The present studies were undertaken to detennine the role 

of PDGF-BB, one of the PDGF isoforms, in the stimulation of fibronectin gene expression 

in vascular fibroblasts isolated from rat thoracic aorta. 
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MATERIALS AND METHODS 

Materials 

Human recombinant PDGF-BB was purchased from UBI (Lake Placid, NY). The 

mitogenic stimulation is determined by )H-thymidine incorporation using human foreskin 

fibroblasts. The dose for half maximal stimulation is 0.9 ng/ml. Human recombinant 

IGF-I was from UBI. Biological activity of IGF-I was determined via a radio-receptor 

assay using human placental cell membranes. The dose for half maximal displacement 

is 1.6 ng/mi. Collagenase, elastase and Bovine serum albumin were purchased from 

Sigma Chemical Company (St. Louis, MO). Fetal bovine serum and newborn calf serum 

were from Whittaker Bioproducts (Walkersville, MD). Cell culture medium-199 was 

purchased from GibcolBRL (Grand Island. NY). Polyclonal anti-rat fibronectin antibody 

and monoclonal anti-rat «-smooth muscle actin antibody, Goat anti-rabbit IgG antibody 

conjugated with fluorescein isothiocyanate (FITC) and goat anti-mouse antibody 

conjugated with FITC were from Sigma. Polyclonal anti-rat Factor VIII antibody was 

from Calbiochem (La Jolla, CAl. Normal goat serum was from Cappel Laboratories 

(Cochranville, PAl. E. Col; containing the fibronectin gene and the 18s gene was 

obtained from Dr. R. O. Hynes (MIT). Restriction endonuclease ECORl was purchased 

from GibcolBRL. Agarose and polyacrylamide were from Sigma. Low melting point 

agarose gel was from FMC BioProducts (Rockland, ME). Elutip-d columns were 

purchased from Scleicher & Schuell (Kneene , NH). DECA primer DNA labelling kits 
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were purchased from Ambion Inc. (Austin, TX). [a_l1p] dCTP 3000 ci/nM was from 

NEWIDUPONT (Boston, MA). Anti-rat IgO antibody conjugated with alkaline 

phosphatase, Nitroblock and phosphatase substrate CSPD were purchased from Tropix 

(Bedford, MA). PVDF membranes were from MiIIipore (Bedford, MA). 

Fibroblast Isolation and Culture 

Wistar-Kyoto (WKY) rats (male, 160-180 g body weight) were purchased from 

Taconic Farms (Germantown, NY). WKY rats were sacrificed by guillotine and aortae 

were rapidly dissected and placed in a beaker of ice-cold Dulbecco' s Phosphate-Buffered 

Saline (PBS) (PH 7.4). After washing out blood and cleaning pericentitial tissue, aortae 

were opened longitudinally. The intima were scraped out with a scalpel blade. The 

remaining tissue was subjected to an enzyme solution containing collagenase and elastase 

(Collagenase 2 mg/mI, Elastase 2 mg/mI, Bovine Serum Albumin 2 mglml), digesting the 

tissue for about 30 min at 3rC. The adventitial layer was then carefully peeled away 

from the media under a microscope. The adventitia were pooled, minced and placed in 

a fresh enzyme solution for about 2 hours to produce single-cell suspensions for plating. 

The suspensions were centrifuged and the pellets were seeded into a Petri dish with cell 

culture medium-199 (M-199) supplemented with 20% fetal bovine serum (FBS). The 

cells were incubated at 37°C in an atmosphere of 5% CO2-95% air. The medium was 

replaced twice a week. After several generations the subculture medium was switched 

to M-199 supplemented with 10% newborn calf serum (NCS). All manipulations were 

performed in the cell culture hood. The fibroblasts between passages 10 to 20 were used 

for experiments. 
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Characterization of Fibroblasts 

Even when the intima and media of rat thoracic aorta have been removed. it is 

still possible that smooth muscle cells or endothelial cells contaminate the cell cultures. 

Immunohistochemical techniques were used to identify the fibroblast. For example, ct

Smooth muscle actin is specific to smooth muscle cells and Factor VIII is present only 

in endothelial cells. Therefore, immunofluorescent staining of a-smooth muscle actin and 

factor VII] helped distinguish fibroblasts from smooth muscle cells and endothelial cells. 

Since we know that the fibroblast is the major cell producing fibronectin. fibronectin 

produced by fibroblasts isolated from rat thoracic aortae was confirmed by 

immunofluorescent stain. 

The cells were grown on glass coverslips for 3 to 4 days and then fixed in 3.7% 

formaldehyde for IO min at 4°C. Before staining, the coverslips were treated with 

acelOne for 5 min at _20°C to increase the permeability of the cell membrane. To avoid 

a dirty background, non-specific binding sites were blocked by incubating the glass 

coverslips with normal goat serum at a 1:20 dilution in Hank's Buffered Salt Solution 

(HBSS) overnight at 4°C. The first antibodies (polyclonal anti-rat fibronectin antibody, 

polyclonal anti-rat Factor Vill antibody, mouse monoclonal anti-rat a-smooth muscle 

actin antibody) were added to the coverslips, respectively, and incubated with the cells 

for 3 or 4 hours at 4°C at a dilution of I :20 in HBSS. Excess antibodies were washed 

out from the covers lips with HBSS. The second antibody (goat anti-rabbit IgG antibody 

conjugated with fluorescein isothiocyanate (FITC) or goat anti-mouse IgG antibody 

conjugated with FITC was added and incubated with the coverslips at 4°C for another 3 
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to 4 hours. The coverslips were then rinsed with HBSS and viewed under fluorescence 

tnlcroscopy. 

Isolation of Plasmid DNA Containing Fibronectin eDNA and 18s DNA 

This procedure is based on the alkaline lysis method (Sambrook et ai. 1989) 

utilizing the detergent sodium dodecyl sulfate (5DS) and NaOH to lyse E. coli and release 

nucleic acids and plasmid DNA. Potassium acetate was added to neutralize the solution 

which allows plasmid DNA to reanneal while precipitating most denatured genomic DNA 

and proteins. Plasmid DNA was further purified from any unprecipitated genomic DNA 

by a cesium chloride (esC!) gradient containing ethidium bromide. Nicked plasmid or 

genomic DNA, being linear, binds more ethidium bromide than plasmid DNA resulting 

in a lower density. This allows plasmid to travel further down the CsCI gradient and be 

visualized via ultraviolet (UV) light as a separated fluorescent band. Then, the band can 

be extracted. 

E. Coli containing the fibronectin gene or 18s gene were grown on a shaker 

overnight al 37°C in 25 ml Luria-Bertani (LB) medium containing 1% tryptone, 0.5% 

yeast extract, 1 % NaCl and 0.35 N NaOH plus 50 ~glml ampicillin. The 25 ml of 

bacteria were amplified by growing in 500 ml LB medium supplemented with 50J.lglml 

ampicillin and incubated overnight shaking at 37°C. Then, the bacteria were spun down 

at 4°C and the pellets resuspended in a solution containing 50 mM glucose, 25 mM Tris, 

and lO mM EDT A. The resuspended bacteria were lysed by gentle shaking in a 0.2 M 

NaOHJI % SDS solution. Proteins in the mixture were precipitated by the addition of 3 

M potassium acetate. After a subsequent centrifugation, the supernatant containing DNA 
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was filtered through a Whatman No.1 filter and precipitated overnight at ·20°C in ethanol. 

The precipitated DNA was spun down and resuspended in TE buffer ( 10 rnM Tris-CI , I 

mM EDTA, pH 8.0) containing 11 gm CsCI. Ethidium bromide ( 10 mg/ml) was added 

to each sample allowing the DNA to be visualized under UV light. The samples were 

aJiquoted into 5 ml Beckman quick seal tubes and centrifuged for at least 16 hours at 

64,000 rpm at 20°C. After centrifugation, ultraviolet light disclosed two thin bands in the 

tubes. The lower one was plasmid DNA. The plasmid DNA was collected with a syringe 

connected to an 18 gauge needle. Ethidium bromide was washed out from plasmids by 

mixing an equal volume of TE buffer saturated with anhydrous isopropanol. Two 

volumes of TE buffer and 6 volumes of 100% ethanol were added and the samples 

allowed to stand overnight at -20°C to precipitate DNA. The samples were spun down 

and the pellets washed with 70% ethanol. Plasmid DNA was kept in 0.05 volumes of 3 

M ammonium acetate and 2.5 volumes of ethanol at -20°C. Before using. the samples 

were spun and resuspended in TE buffer. The plasmid DNA was quantitated by reading 

at AltlO by a spectrophotometer. 

Isolation of Fibronectin cDNA Probe 

Fibronectin cDNA was isolated via restriction endonuclease cutting of a plasmid 

containing the fibronectin gene. Plasmid DNA was incubated with restriction 

endonuclease ECORl in a reaction buffer containing 50 mM TrislHCI-pH 8.0. 10 mM 

MgCl1 • 100 mM NaCI for I hour at 37°C. The reaction was terminated by the addition 

of loading buffer (20% Fico1l400, 0 . 1 M Na-EDTA, 1 % SDS, and 0.25% xylene cyano1). 

The fibronectin cDNA fragments were separated from the remaining plasmid fragments 
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by agarose gel electrophoresis. The reaction mixture was applied to a I % low melting 

point agarose gel containing 0.5 Ilglml ethidium bromide and run at 60 volts for about 2 

hours. After electrophoresis, the DNA gel was checked on an ultraviolet transilluminator. 

The fibronectin eDNA band was identified by comparing the bands obtained from plasmid 

DNA with the bands obtained from DNA standard running in the same gel. The 

fibronectin eDNA band was excised from the gel under ultraviolet illumination. Further 

extraction and purification of fibronectin eDNA from the agarose gel were performed 

through the use of the Elutip-d column containing a DNA binding resin. The low melting 

point gel was melted in low salt solution (0.2 M NaCl, 20 mM TrislHCI-pH 7.5, 1 mM 

EDT A) at 65°C. Then, the gel mixture was applied to the column and passed through 

the column slowly. The bound cDNA was eluted from the column by slowly washing 

the column with high salt solution (I M NaC!, 20 mM Tris/HCI-pH 7.5, I mM EDTA). 

The cDNA was precipitated in two volumes of TE buffer and six volumes of 100% 

ethanol overnight at -20°C. Before using, the cDNA was resuspended in TE buffer and 

quantitated by reading at A26/). 

Fibronectin mRNA Isolation and Analysis 

Total RNA was obtained by the use of phenol extraction (Sambrook et al., 1989). 

This method utilizes SDS lysing of the cells thereby releasing nucleic acids and proteins 

while inhibiting RNA degrading enzymes. Phenol at acid pH was used to separate 

nucleic acid-associated proteins from RNA. 

The cell cultures were rinsed with PBS two times to get rid of cell culture 

medium. The cells were scraped out and lysed with SDS (10 mM EDTA-pH 8.0, 0.5% 
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5DS, O.IM Na-Acetate). After sonication, the lysate RNA was extracted by the addition 

of acidic phenol (pH 3.7-4.5) and subsequent centrifugation at 4°C for 15 to 20 min. The 

top aqueous layers containing RNA were carefully collected and precipitated overnight 

at -20°C in 0.07 M Tris-pH 8.0. 0.87 M NaCI. and 100% ethanol. The samples were 

spun and RNA pellets washed with 70% ethanol one time. To avoid RNA degradation, 

it is better to keep the RNA sample in 0.05 volumes of 3 M ammonium acetate and 2.5 

volumes of ethanol at _20DC. Before using. the samples were spun and resuspended in 

diethyl pyrocarbonate (DEPC) treated water and quantitated at A2f,Q. 

mRN A Agarose Gel Electrophoresis 

Fifteen J..Ig total RNA were added to a mixture containing IX MOPS, 50% 

fonnamide and denatured with incubation at 65°C for 15 minutes. After mixing with 0.2 

volumes of formaldehyde. 2 ~lloading buffer (I mM EDTA-pH 8.0. 50% glycerol. 0.25% 

xylene cyanol, 0.25% bromophenol blue) and 2111 I Ilglml ethidium bromide, the sample 

was applied to a well in a slab gel containing 1.2% agarose in IX MOPS and 6% 

formaldehyde. The gel was submerged in IX MOPS and run at 80 volts until the leading 

dye front had run about 50% of the gel length. 

Once the electrophoresis was completed, the RNA bands were photographed on 

an ultraviolet transilluminator. DEPC treated water was used to wash out formaldehyde 

from the gel. Capillary transfer in 20X SSPE (17.4% NaC!. 2.76% NaH,PO .. 1.24% 

EDTA, pH 7.4) was used to transfer the RNA to a nylon membrane. The gel was placed 

on top of a strip of filter paper which had been soaked in 20X SSPE. This paper was 

draped over a plastic plate and allowed to hang into a container of 20X SSPE. A sheet 
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of nylon, cut to the dimensions of the gel and soaked in DEPC treated water followed by 

20X SSPE was placed on the gel. A two inch stack of brown paper towels, all cut to the 

dimensions of the gel, was placed on top of the nylon. A second plastic plate was placed 

on top to insure contact between the layers of paper. After overnight transfer, the nylon 

was baked for 2 hours at 80°C in an oven or exposed to ultraviolet irradiation on a 

transilluminator for 4 min to fix the RNA to nylon. This step pennitted it to be incubated 

in prehybridization buffer without loss of the RNA. 

Complementary DNA Labeling 

A random primer DNA labelling kit was used to incorporate [tt.J2P] dCTP 3000 

CilnM into the eDNA. This method uses random hexanucleotides as primers which bind 

to the denatured cDNA (25 ng). The large subunit of DNA polymerase I (K.1enow 

fragment) polymerizes a mixture of unlabeled dATP, dGTP and dTTP along with the 

labelled dCTP, using the purified cDNA as the template. The reaction was run for 2 

hours at 37°C and terminated by removal of the unincorporated nucleotides from the 

labelled cDNA with a passage over the Elutip-d column. The dCfl2P-Iabelled cDNA 

fragments were then be incubated with the northern blot. 

Northern Blotting 

The hybridization was carried out using a published procedure (Church and 

Gilbert, 1984). Prehybridization took at least 2 hours at 65°C in a hybridization buffer 

containing 1% BSA. 7% SDS. 0.5 M phosphate-pH 7.0 and 0.001 M EDTA. 100 ~g!ml 

sonicated and denatured salmon sperm DNA was added at the time of hybridization. 
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Hybridization was performed for 16-24 h at 65°C using eDNA probes labeled with l2p by 

the random hexamer priming procedure. After hybridization, membranes were washed 

for 10 min 1 to 3 times at 65°C with washing buffer containing I % 50S, 0.04 M 

phosphate, 0.001 M EDTA. A v-ray monitor was used to monitor the radioactivity of the 

membranes. After getting an optimal signal, blots were exposed to X-ray films between 

two intensifying screens for 5 to 10 days at -80°C. Developed films were scanned by 

laser densitometry and analyzed using software NIH image 1.5.4. The term "relative 

intensity" used in this dissertation denotes the relative density offibronectin mRNA bands 

in northern blots. 

5DS-PAGE Gel Electrophoresis 

One-dimensional polyacrylamide gel electrophoresis under denaturing conditions 

was used to separate proteins based on the basis of molecular size. After solubilizing all 

the proteins by boiling in the presence of SDS and urea, an aliquot of the protein solution 

was applied to a gel lane, and the individual proteins or their subunits were separated 

electrophoretically. 

SDS-polyacrylamide gel usually consists of a separating and a stacking gel. 

Before making a gel, a gel cast was assembled using two clean glass plates (one with 

comb) and a rubber spacer. A 7% separating gel was made by mixing 9.3 m1 30% 

acrylamide/0.8% biacrylamide, IO ml 4X Tris.CUSDS-pH 8.8, and 20.7 ml distal water. 

The mixture was degassed 10 to 15 min and 0.4 ml 10% ammonium persulfate and 0.03 

ml TEMED were added. A syringe connected to a long needle was used to transfer the 

separating gel solution to the gel cast along an edge of the spacer to a height of about II 

34 



em. The gel was polymerized within 30 min at ambient temperature. A 4% stacking gel 

was made by mixing 1.95 ml30% acrylamide/O.8% biacrylamide, 3.75 m14X Tris/SDS

pH 6.8, and 9.15 ml distilled water. After degassing and the addition of ammonium 

persulfate and TEMED, the gel mixture was carefully poured into the cast, until the 

height of the solution in the cast was about 3 em. After 30 to 45 min polymerization, the 

plate with comb and rubber spacer were carefully removed without tearing the gel. 

The gel was placed on the electrophoresis unit and two buffer chambers were 

filled with 2 liters of 8DS/electrophoresis buffer (1.5% Tris-base, 7.2% glycine and 0.5% 

5DS). Two stacks of filter papers that had been soaked in 8DS/electrophoresis buffer 

connected the gel and electrodes via touching one side to the top or bottom of the gel and 

draping the other side into the buffer chambers. 

The protein to be analyzed was diluted I: 1.5 (vol/vol) with sample buffer (1 % 

SOS, 8 M urea, 1 % Oithiothreitol, 0.001 M H1P04). After boiling 5 min at 100°C to 

denature the protein, and adding bromophenol blue, the samples were applied to the gel 

and run at 40 rnA for about 3-4 hours at 12-15°C. 

When electrophoresis had been completed, the samples were transferred from the 

gel to PVDF membrane. A piece of PVDF membrane, cut to the same dimensions as the 

gel and wetted with methanol followed by distilled water, was placed on top of the gel. 

Two stacks of filter papers, about 20 layers each, cut to the same dimensions as the gel 

and soaked in transfer buffer (25 mM Tris-base. 192 mM glycine. 0.0375% SDS). 

sandwiched the gel. Then, the filter paper-gel sandwich was transferred onto the anode 

plate of the transfer unit. The cathode plate was placed on top of the sandwich. Transfer 

usually takes about 2-3 hours at 0.8 mAmpslcm2. After transforation, the gel was stained 
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with coomassie blue to insure completed transfer. The membrane was kept in washing 

buffer (0.002% Tween-20, 2 mM Tris-HCI, 0.09% NaCl, 0.002% NaAzide, pH 7.4), until 

ready for western blotting. 

Slot Blotting 

To get an optimal protein concentration applied to the slot blot, different dilutions 

of protein samples with 2% deoxycholate were prepared. The samples were applied to 

a Filtration Manifold System (Gibco/BRL). The proteins were bound to the PVDF 

membrane via a vacuum connected to the manifold. The membrane containing sample 

proteins can be kept in washing buffer for three days, until ready for the 

chemiluminescent western blotting. 

Non-radioactive Chemiluminescent Western Blotting 

After the protein samples were transferred to PVDF membranes by slot blotting 

or 50S-polyacrylamide gel transfer, the membranes were gently washed in 

blocking/antibody incubation buffer (5% dry , non-fat milk; 0.1% Tween-20; 2 mM Tris

HCI; 0.09% NaCI; 0.002% NaAzide; pH 7.4) for one hour. The first antibody, anti-rat 

fibronectin antibody from rabbit antiserum, at a concentration of I :25000 diluted in 

blocking/antibody incubation buffer, was added (0 the membranes and incubated for 

another I hour. The first antibody was washed out by several washings in washing 

buffer. The second antibody, anti-rat IgG antibody conjugated with alkaline phosphatase, 

was added at a I :35000 dilution in blocking/antibody incubation buffer and incubated with 

the membrane for 15 minutes. Membranes were washed in washing buffer to get a clean 
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background. To enhance the chemiluminescent signal on PVDF membranes, a 5 minute 

incubation in Nitroblock was carried out. Finally. the membranes were subjected to 

substrate CSPD solution at a final concentration of 0.0024 mM. After five minute 

reaction, the wet membranes were wrapped in plastic wrap allowing the reaction to 

proceed for another 15 minutes. The membranes were then exposed to Kodak XAR

OMAT X-ray films for I to 3 minutes. Developed films were scanned by laser scanner 

and analyzed using software NIH image 1.5.4. The fibronectin levels were detenruned 

via comparing the density measurement obtained from fibronectin standard and the 

density measurement obtained from samples. 

Statistical Analysis 

One-way analysis of variance (ANOV A) and Tukey-Kramer multiple comparisons 

test were used to determine statistical significance. Differences were considered 

significant at P<O.05. Software [nstat version 2.0 I were used for statistical analysis. 
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RESULTS 

Cell Characterization 

Morphology. Hematoxylin-Eosin stain was used to examine the cell morphology. 

Fibroblasts isolated from rat thoracic aorta showed predominant hi- and tripolar 

morphologies. The cell border was smooth and there were small processes at each pole 

(Fig. 6). At confluence, the fibroblasts aligned in parallel arrays giving the cell cultures 

a swirling appearance. 

Immunofluorescent stain. Cl-smooth muscle actin stain: anti-rat a-smooth muscle 

actin antibody is a monoclonal antibody specific to smooth muscle cells. 

Immunofluorescent staining of fibroblasts isolated from rat thoracic aorta with monoclonal 

anti-Ct-smooth muscle actin antibody was performed to estimate the purity of the 

fibroblast cell cultures. The staining was negative in the fibroblasts (top, Fig. 7). Smooth 

muscle cells isolated from rat thoracic aorta were used as a positive controL The bright 

white color in the picture denoted that the smooth muscle cells contain a -smooth muscle 

actin (bottom, Fig. 7). This evidence demonstrated that the fibroblast cell cultures were 

not contaminated by smooth muscle cells. 

Factor VIII stain: Factor VIII is a factor which is only present in endothelial cells. 

To find out whether there was endothelial cell contamination, the cell cultures were 

reacted with rat poJyclonal anti-Factor VIII antibody (Fig. 8). The negative results in 

fibroblasts isolated from thoracic aorta suggested that there was no endothelial cell 

contamination in these cultures. 
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Figure 6. Hematoxylin·Eosin stain of cultured fibroblasts isolated from WKY rat thoracic 
aorta. 
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Figure 7. Immunofluorescent stain of cultured fibrobl asts (top) and smooth muscle cells 
(bonom) isolated from WKY rat thoracic aorta with monoclonal anti-rat Ct-smooth muscle 
actin antibody. The bright white color in the picture is a-smooth muscle actin. 
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Figure 8. immunofluorescent stain of cultured fibroblasts isolated from rat thoracic aorta 
with poJyclonal anti-rat Factor vm antibody. 



The presence of fibronectin in the cell cultures was confirmed by 

immunofluorescent staining with rat polycionaJ anti-fibronectin antibody. A large amount 

of fibronectin production (bright white color in the picture), was detected in these cultures 

(Fig. 9). 

Fibronectin mRNA Response to PDGF-BB 

Fibronectin mRNA time-response experiments. PDGF-BB produced rapid and 

transient stimulation of fibronectin gene expression in vascular fibroblasts (Fig. 10, 11). 

Cell cultures were treated with PDGF-BB with a final concentration of 20 ng/mI, 

fibronecti n mRNA levels were assessed at 2, 4, 6 and 8 hours after PDGF-BB addition. 

In the northern blot analysis, an increase in fibronectin mRNA levels after PDGF 

treatment was first detected at 4 hours and appeared maximal (1.2·fold above normal 

values) at 6 hours (Fig. 10, II ). These increases were transient, and returned to basal 

levels by 14 hours. No further changes in fibronectin mRNA levels were found at 24 

hours (data not shown). 

In northern blotting analysis, 18s ribosomal RNA was used as an internal control. 

Uniform 18s ribosome RNA bands denote (I) uniform application of the RNA samples 

to the gel; (2) uniform transfer of the RNA samples from the gel to the nylon; (3) the 

increase of fibronectin mRNA levels was a specific response to growth factors and not 

due to a generalized effect on RNA synthesis (Fig. 10, 13, 16, 19,22). 

Total RNA levels at different time points after PDGF·BB addition showed no 

difference when compared (0 untreated control (P > 0.05 vs. control) (Fig. 12). 
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Figure 9. Immunofluorescent stain of cultured fibroblasts isolated from rat thoracic aorta 
with (top) and without (bottom) polyclonal anti-fibronectin antibody. The bright white 
color in the picture is fibronectin. 





+- Fibronectin mRNA 

+- 185 mRNA 

o 2h 4h 6h 8h 

Figure 10. Northern blot of fibronect in mRNA levels in response to PDGF-BB in time
response experiments. Total RNA (15 Ilgllane), extracted from 20 nglmt PDGF-BB 
treated fibroblasts at different time points, was probed with eDNA for fibronectin (top). 
Same blot was stripped and reprobed with eDNA for 18s mRNA (bottom). 
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Figure 11. Fibronectin mRNA levels in response to PDGF-BB in time-response 
experiments. Fibroblasts isolated from rat thoracic aorta were treated with 20 nglml 
PDGF-BB. Fibronectin mRNA levels obtained from 15 Ilg total RNA was analyzed at 
2, 4, 6 and 8 hours after PDGF-BB addition. n = 5. * P < 0.05 VS. untreated control. 
** P < 0.01 VS. untreated controL *** P < 0.001 VS. untreated control. 
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Figure 12. Total RNA levels in response to PDGF-BB in time-response experiments. 
The fibroblasts were treated with 20 nglmJ PDGF-BB. Total RNA was extracted at 2, 4, 
6 and 8 hours after PDGF-BB addition. n = 5. P > 0.05 V5. untreated control. 
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Figure 13. Northern blot of fibronect in mRNA levels in response to PDGF-BB in dose
response experiments. Total RNA (IS ~gll ane), from fibrobl asts treated with PDGF-BB 
at a concentration of 5, 10, 20 and 40 nglrnl for 6 hours, was probed wi th eDNA for 
fibronectin mRNA (middle). Same blot was stripped and reprobed wi th eDNA for 18s 
mRNA (bottom). Top panel is ethidium bromide stained 100ai RNA samples used for 
northern blotting. FN, fibronectin. 
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Figure 14. Fibronectin mRNA levels . in response to PDGF-BB in dose-response 
experiments. Fibroblasts isolated from rat thoracic aorta were treated with 5, 10, 20 and 
40 nglmJ PDGF-BB. Fibronectin mRNA levels were analyzed at 6 hours after PDGF-BB 
addirion by northern blotting. n = 6. ** P < 0.01 VS. untreated control. *** P < 0.001 
vs. untreated control. 
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Fibronectin mRNA dose-response. PDGF-BB stimulated fibronectin mRNA in 

vascular fibroblasts in a dose-dependent manner (Fig. 13. 14). Fibroblasts were treated 

with PDGF-BB at a final concentration of 5, 10, 20 and 40 nglml respectively. 

Fibronectin mRNA levels were assessed 6 hours after PDGF-BB addition. Significant 

increases in fibronectin mRNA levels were found after exposure of cell cultures to 10 

ng/ml PDGF-BB. Further increases in PDGF-BB concentrations produced gradual 

increases in fibronectin mRNA levels. After exposure of cell cultures to 40 ng/ml PDGF

BB, fibronectin mRNA levels were 1.3-fold above normal values (Fig. 14). 

Assurance that equal amounts of total cellular RNA were loaded per lane was 

made by ethidium bromide staining of the major ribosomal RNA bands of the samples 

used for northern blot analysis (Fig. 13). Ethidium bromide at a concentration of I 

mg/ml was added to the total RNA samples before the samples were applied to the 

agarose gel. Ethidium bromide staining also helped determine whether there was RNA 

degradation in the sample. 

The total mRNA levels at different PDGF-BB dosages showed no significant 

variation (P > 0.05 vs. untreated control) (Fig. 15). 

Fibronectin mRNA in ReSPOnse to IGF-I 

IGF-I also produced a fast stimulation of fibronectin mRNA in vascular 

fibroblasts (Fig. 16, 17). In the time-response, fibroblasts were treated with 20 ng/ml 

IGF-I. and fibronectin mRNA levels were assessed at 2. 4, 6 and 8 hours after IGF-I 

addition. Significant increases in fibronectin mRNA levels were detected at 6 hour after 

PDGF-BB addition. The fibronectin mRNA levels at 8 hours is approximately 2.5-
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Figure 15. Total RNA levels in response to POOF-BS in dose-response experiments. 
Fibroblasts isolated from rat thoracic aorta were treated with 5, 10, 20 and 40 nglml 
PDGF-BB respectively . Total RNA was extracted 6 hours after PDGF-BB treatment. n 
= 6. P > 0.05 vs. control. 
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Figure 16. Northern him of fibronectin mRNA levels in response to IGF-I in lime
response experiments. Total RNA ( 15 ~g1lane), from fibroblasts treated with IGF-I (20 
nglml) for 2, 4, 6 and 8 hours respectively, was probed with cDNA for fibronectin mRNA 
(top). Same blot was stripped and reprobed with eDNA for 18s mRNA (bottom). 
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Figure 17. Fibronectin mRNA levels in response to IGF-I in time-response experiments. 
Fibroblasts isolated from rat thoracic aorta were treated with 20 nglml IGF-1. Total RNA 
was extracted at 2, 4, 6 and 8 hours after IGF-I addition. n:; 5. *** P < 0.001 VS. 

untreated control. 
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fold above the normal values (Fig. 17). 

No difference was found in total RNA levels at different time points after IGF-I 

addition (P > 0.05 vs. untreated control) (Fig. 18). 

Interaction Between PDGF-BB and IGF-I on Stimulating Fibronectin mRNA Levels 

The above results demonstrate that either PDGF-BB or IGP-I was able to 

stimulate fibronectin mRNA expression individually in vascular fibroblasts. To further 

determine whether PDGF-BB could act additively or synergistically with IGF-I , the 

interaction between PDGF-BS and IGF-I was examined by exposure of cell cultures for 

6 hours to PDGF-BB (20 ng/mI) and IGF-I (20 ng/ml) simultaneously. The results show 

a synergistic increase (276%) in fibronectin mRNA levels in cells exposed to both PDGF

BS and IGF-I (Fig. 19.20). There was an 85% increase of fibronectin mRNA levels in 

fibroblasts treated with PDGF-BB (20 nglml) and a 93% increase in cell s treated with 

IGF-I (20 ng/ml) . 

No difference was found in total RNA levels between growth factor treated and 

untreated samples (P > 0.05) (Fig. 21 ). 

The Effect of Cycloheximide and Actinomycin D on Fibronectin mRNA Synthesis 

To elucidate the possible mechanisms underlying the fibronectin mRNA response 

to PDGF-BB, PDGF-BB (20 ng/ml) was added to cell cu ltures in the presence of 

cycloheximide (a final concentration of 36 mMIml), a protein synthesis inhibitor, and 

actinomycin D (a final concentration of 40 mMIml), a transcription inhibitor. 

Cycloheximide resulted in a greater inc rease in fibronectin mRNA levels (Fig. 22). 
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Figure 18. Total RNA levels in response to JGF-J in time-response experiments. The 
fibroblasts isolated from rat thoracic aorta were treated with 20 nglmJ IGF-l. Total RNA 
was extracted at 2, 4, 6 and 8 hours after IOF-I addition. n:: 5. P > 0.05 vs. untreated 
control. 
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Figure 19. Northern blot of fibronectin mRNA levels in response to PDGF-BB and IGF-I 
in fibroblasts isolated from rat thoracic aorta. Total RNA (15 ~g11ane). from fibroblasts 
treated for 6 hours with either PDGF·BB (20 ng/mI) (P) or IGF·I (20 ng/mI) (I). or both 
together (20 ng/mI each) (P+I), was probed with eDNA for fibroneetin mRNA (top). 
Same blot was stripped and reprobed with eDNA for 18s mRNA (bottom). CON., 
control. 
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Figure 20. Fibronectin mRNA levels in response to PDGF-BB and IGF-1. Fibroblasts 
were treated with PDGF·BB (20 ng/ml) and IGF·I (20 ng/mI) respectively, or treated with 
PDGF-BB and IGF-I (20 nglm] each) simultaneously. Fibronectin mRNA levels were 
estimated by northern blot analysis at 6 hours after growth factor addition . n = 6. ** P 
< 0.01 VS. untreated control. *** P < 0.001 VS. untreated conlrol. CON., control. 
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Figure 22. Northern blot of the effects of cycloheximide and actinomycin D on 
fibronectin mRNA expression. Total RNA (15 ~gIlane), from fibroblasts treated with 
PDGF-BB (20 ng/mI) only (P). PDGF-BB plus cycloheximide (36 mMIm1) (P+C). and 
PDGF-BB plus actinomycin D (40 mMIm1) (P+A). was probed with cDNA for fibronectin 
mRNA (top). Same blot was stripped and reprobed with cDNA for ISs mRNA (bollom). 
C, untreated control. 
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Actinomycin 0 blocked the increase of fibronectin mRNA levels induced by PDGF-BB 

(Fig. 22). 

Fibronectin Standard Serial Dilution 

A serial fibronectin standard (rat serum fibronectin) dilution , from 80 ng/well (0 

2.5 ng/ml, was made to obtain optimal fibronectin concentration and anti-fibronectin 

antibody concentration applied to slot blotting (top, Fig. 23). A concentration-intensity 

curve was drawn according to the relative intensity of fibronectin standard obtained from 

slot blotting (bottom, Fig. 23). The relative intensity of fibronectin increased rapidly at 

concentrations of 2.5 to 20 ng/well. The curve started reaching a plateau at a 

concentration of 20 to 40 ng/well. Fibronectin standard, 10 fig/well , was applied to every 

blot. 

SDS-PAGE Gel Electrophoresis 

SDS-Polyacrylamide gel electrophoresis was used to separate fibronectin 

molecules from other proteins. After western blotting analysis , only one fibronectin band 

was detected in the blot (Fig. 24) suggesting that (I) the fibronectin antibody was 

specific to fibronectin . No non-specific binding was detected; (2) slot blotting can be 

used to examine the fibronectin levels. 

PDGF-BB stimulated fibronectin levels can also be demonstrated in the western 

blot. A significant increase in fibronectin levels after PDGF-BB (20 nglml) treatment was 

detected in both cell culture medium and cell samples (Fig. 24). 
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Figure 23. Slot blot of serial diluted rat serum fibronectin (top). Bottom panel is the 
concentration-intensity curve of rat serum fibronectin drawn according to the relative 
intensity of fibronectin obtained from slot blotting. FN, fibronectin. 
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Figure 24. Western blot of fibronectin produced by fibroblasts isolated from rat thoracic 
aorta. Total protein extracted from fibroblasts was separated by SDS-PAGE gel 
electrophoresis and was probed by anti-fibronectin antibody. std, fibronectin standard; 
can, control; BB, PDGF-BB (20 nglml) treated. 
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Figure 25. Intracellular fibronectin levels in response to PDGF-BB in time-response 
experiments. Fibroblasts were treated with 20 nglmJ PDGF-BS for 4, 8, 12 and 24 hours 
respectively. Fibronectin levels were assessed by slot blotting and western blotting. n 
= 8. * P < 0.05 VS. untreated control. 
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Figure 26. Medium fibronectin levels in response to PDGF-BB in time-response 
experiments. Fibroblasts were treated with PDGF-BB (20 nglml) for 4, 8, 12 and 24 
hours respectively . Fibronectin levels were assessed by slot blotting and western blotting. 
n = 10. * P < 0.05 VS. untreated control. ** P < 0.01 VS. untreated control. 
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Fibronectin Response to PDGF-BB 

Fibronectin time-response experiments. PDOF-BS stimulated fibronectin levels 

in both the intracellular compartment and the cell culture medium (Fig. 25, 26). Cell 

cultures were treated with PDOF-BS at a final concentration of 20 nglml and fibronectin 

levels in the cell and in the cell culture medium were evaluated at 4, 8, 12 and 24 hours 

after PDGF-BB addition by slot blotting and western blotting. Significant increase of 

cellular fibronectin levels (21 % higher than that of untreated control) was detected at 8 

hours and lasted to 12 hours after POOF-BS treatment (Fig. 25). In the cell culture 

medium, a maximal increase of fibronectin levels (20% higher than that of untreated 

control) occurred at 12 hours after PDOF-BS addition (Fig. 26). The fibronectin response 

to PDGF-BB also was fast and transient. No difference in fibronectin levels between 

treated and untreated samples was detected at 24 hours after PDGF-BB treatment. 

The total protein levels in the PDGF-BB treated group increased at 24 hours after 

PDGF-BB addition. There was no significant increase in total protein levels between 

treated and untreated groups at any time point (Fig. 27). 

Fibronectin dose-response experiments. Dose-dependent increases in fibronectin 

levels in responding to PDGF-BB were demonstrated in both the intracellular 

compartment and the cell culture medium (Fig. 28, 29). Cell cultures were treated with 

5, 10,20 and 40 nglrot PDGF-BB. Fibronectin levels in the cell and cell culture medium 

were assessed at 12 hours after PDGF-BB addition. Significant increases in fibronectin 

levels were detected after exposed cells to 10 nglml PDGF-BB in the cell (Fig. 28) and 

to 20 nglml PDGF-BB in cell culture medium (Fig. 29). After 20 nglml PDGF-BB 
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Figure 27. Total protein levels in response to PDGF-BB in time-response experiments. 
Fibroblasts were treated with PDGF-BB (20 ng/mI) for 4,8, 12 and 24 hours respectively. 
Total protein was measured by Lowry Assay. n = 12. 
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Figure 28. Intracellular fibronectin levels in response to PDGF-BB in dose-response 
experiments. Fibroblasts were incubated with PDGF-BB at concentrations of 5, 10, 20 
and 40 nglml for 12 hours. Fibronectin levels were assessed by slot blotting and western 
blotting. n = 8. *** P < 0.001 VS. untreated control. 
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Figure 29. Medium fibronectin levels in response to PDGF-BB in dose-response 
experiments. Fibroblasts were incubated with POOF-BS at concentrations of 5, 10, 20 
and 40 nglml for 12 hours. Fibronectin levels were assessed by slot blotting and western 
blotting. n = 9. ** P < 0.01 VS. untreated control. *** P < 0.001 VS. untreated control. 
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addition, intracellular and extracellular fibronectin levels increased 48% and 67%, 

respectively. 

Total protein levels obtained from cells exposed to 40 nglml PDGF-BB were 

higher than that of untreated control group (Fig. 30). 

Fibronectin Response to IGF-I 

Fibronectin time-response experiments. Cell cultures were incubated with 20 

nglml (final concentration) IGF-I for 4, 8, 12 and 24 hours respectively. Fibronectin 

levels in the cells and culture medium were evaluated separately_ [OF-I induced both 

intracellular fibronectin levels and fibronectin secretion into the cell culture medium. 

Increases in fibronectin levels were only detected at 8 hours after IGF-I addition in the 

fibroblasts (Fig. 31) and 12 hours in the cell culture medium (Fig. 32). IGF-I produced 

a 25% and 28% increase in fibronectin levels in the cell s and cell culture medium, 

respectively. 

At 12 and 24 hours after IGF-I addition, total protein levels in fibroblasts 

increased in both treated and untreated groups (Fig. 33). However, no significant increase 

was found between the treated and untreated group at the same time points. 

Fibronectin dose-response experiments. Increased fibronectin levels response to 

IGF-I was dose dependent (Fig. 34, 35). Fibroblasts were incubated with 5, 10, 20 and 

40 ng/mlIGF-I (final concentration) , respectively, for 12 hours . Fibronectin levels were 

assessed by slot blotting. IGF-I at a concentration of 10 ng/ml induced a significant 

increase in both intracellular and extracellular fibronectin . Increasing IGF-I concentration 

71 



80 0 control 

IZI IGF·I 

z 60 

... 
0 J w 
z -0 g> 40 a: 
CD ... 

20 

o. 
4 8 12 24 

TIME (hours) 

Figure 31. Intracellular fibronectin levels in response to IGF-I in time-response 
experimen1S. Fibroblas1S were exposed to IGF-I (20 ng/mI) for 4, 8, 12 and 24 hours 
respectively. Fibronectin levels were assessed by slot blotting and western blotting. n 
= 10. * P < 0.05 vs. untreated control. 
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Figure 32. Medium fibronectin levels in response to IGF-I in time-response experiments. 
Fibroblasts were exposed to IGF-I (20 ng/mI) for 4, 8, 12 and 24 hours respectively. 
Fibronectin levels were evaluated by slot blotting and western blotting. n = lO. ** P < 
0.01 vs. untreated control. 
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Figure 33. Total protein levels in response to IGF-I in time-response experiments. 
Fibroblasts were exposed to IGF-I (20 nglml) for 4, 8, 12 and 24 hours respectively. 
Total protein was measured by Lowry Assay. n = 12. 
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Figure 34. Intracellular fibronectin levels in response to IGF-I in dose-response 
experiments. Fibroblasts were treated with IGF-I at a final concentration of 5, 10, 20 and 
40 nglml for 12 hours. Fibronectin levels were assessed by slot blotting and western 
blotting. n = 8. * P < 0.05 vs. untreated control. •• P < 0.01 vs. untreated contro!. *** 
P < 0.001 vs. untreated control. 
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Figure 35. Medium fibronectin levels in response to IGF·I in dose-response experiments. 
Fibroblasts were treated with IGF-I at a final concentration of 5, 10,20 and 40 nglml for 
12 hours. Fibronectin levels were assessed by slot blotting and western blotting. n = 8. 
* p < 0.05 VS. untreated control. *** P < D.DOI VS. untreated controL 
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to 40 ng/mJ, produced a 58% increase in fibronectin levels in the cells (Fig. 34) and a 

80% increase in the cell culture medium compared with the untreated control (Fig. 35). 

In fibronectin dose-response experiments, no significant variation of total protein 

levels of samples was found after treating cell cultures with different IGF-I concentrations 

(Fig. 36). 

Interaction Between PDGF-BB and IOF-I in Stimulating Fibronectin Levels 

That PDGF-BB acted synergistically with IOF-l in stimulating fibronectin levels 

in both the intracellular compartment and cell culture medium (Fig. 37. 38). Cell cultures 

exposed to PDGF-BB (20 ng/mI) and IGF-I (20 ng/mI) simultaneously for 12 hours 

produced a 115% increase in intracellular fibronectin levels. while a 30% and 33% 

increase in fibronectin levels were detected after cells were treated with PDGF-BB (20 

ng/mI) or IGF-I (20 ng/mI), respectively (Fig. 37). In the cell culture medium, similar 

results were obtained. There was a 11 6% increase in medium fibronectin levels after cell 

cultures were treated with both PDGF-BB and IGF-I (20 nglml each) simultaneously. 

Cell cultures treated with PDGF-BB (20 ng/ml) or IGF-I (20 ng/ml) respectively, 

increased fibronectin levels by 26% and 29% (Fig. 38). 

No difference in total protein levels between both growth factor treated and 

untreated groups was detected (P > 0.05) (Fig. 39). 
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Figure 37. Intracellular fibronectin levels in response to PDGF-BB and IGF-l. 
Fibroblasts were exposed to PDGF·BB (20 nglml) and IGF-I (20 nglml) respectively, or 
exposed to PDGF-BB and IGF-I (20 nglml each) simultaneously. Fibronectin levels were 
assessed by slot blotting and western blotting at 12 hours after growth factor addition. 
n = 8. * P < 0.05 VS. untreated control. *** P < 0.001 VS. untreated control. 
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Figure 38. Medium fibronectin levels in response to PDGF-BB and IGF-1. Fibroblasts 
were exposed to PDGF-BB (20 nglmJ) and IGF·I (20 nglmJ) respectively, or exposed to 
PDGF-BS and IGF-I (20 nglml each) simultaneously. Fibronectin levels were assessed 
by slot blotting and western blouing at 12 hours after growth factor addition. n = 8. >I< 

P < 0.05 VS. untreated control. *** P < 0.00 1 vs. untreated control. 
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Figure 39. Total protein levels in response to PDGF-BB and IGF-1. Fibroblasts were 
exposed to PDGF-BB (20 nglml) and IGF-I (20 nglml) respectively. or exposed to PDGF
BB and IGF-I (20 ng/ml) simultaneously. TOlal protein levels were measured by Lowry 
Assay. n = 10. 
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DISCUSSION 

In recent years there have been many reports indicating that changes in the 

composition of the extracellular matrix have profound effects on cell proliferation and 

differentiation. Physiological and pathological processes involving cell growth and 

differentiation, such as wound healing. atherosclerosis and hypertension are also 

associated with complex patterns of extracellular matrix accumulation (Grinnell 1984). 

The remarkable parallelism that exists between the types of cellular responses elicited by 

PDGF and the effects of the extracellular matrix on cell proliferation led to the possibility 

that a key event in the action of PDGF could be the induction of changes in composition 

andlor abundance of extracellular matrices. Growth factors regulate fibronectin gene 

expression have been reported in recent years. Studies by Blatti et al. ( 1988) and Allen

Hoffmann et al. (1990) suggested that PDGF stimulates fibronectin gene expression in 

AKR-2B cells and human fibroblasts. Transforming growth factor-B (TGF-B) has been 

shown to regulate the expression of fibronectin and other components of the extracellular 

matrix in fibroblasts and aortic endothelial cells (Ignotz and Massague 1986, Madri et al. 

1988, 1989, Roberts er af. 1988, Penttinen er af. 1988). In addition to PDGF and TGF-B, 

substances shown to influence fibronectin expression in cultured cells include 

glucocorticoid (Dean et al. 1988), cAMP (Dean et al. 1988), interleukin-6 (Hagiwara et 

af. 1990), epidermal growth factor (B1atti er af. 1988), glucose (Royer af. 1990), heparin 

(Liau et al. 1989), and tumor necrosis factor (Mauviel et al. 1988). 
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The present studies demonstrates that PDGF-BB, one of the isoforms of PDOF

related molecules enhances fibronectin gene expression in cultured fal thoracic aortic 

fibroblasts. Fibroblasts isolated from rat thoracic aorta were used in these studies because 

they synthesize a large amount of fibronectin which in turn may stimulate vascular 

smooth muscle cell proliferation. Since PDOF-BS is the most potent growth factor 

among the three isoforms (Heldin et at. 1988) and PDOF-BS binding sites are most 

abundant in human fibroblasts (Hart et at. 1988), the role of POOF-BS in fibronectin 

gene expression in vascular fibroblasts were invesligated. 

Fibronectin mRNA Response to PDGF-BB 

Northern blot analysis demonstrated that POOF-BS induces a fast and transient 

fibronectin mRNA increase. Elevated fibronectin mRNA levels in response to PDGF-BB 

were time and dose-dependent (Fig. 25, 26, 2S, 29). The induction of fibronectin mRNA 

levels by PooF-BB is specific because ISs RNA levels did not vary significantly after 

PDGF-BB addition (Fig. 12, 15). In addition, total RNA levels did not change in the time 

and dose response experiments after PooF-BB treatment (Fig. 12, IS) suggesting that the 

increase of fibronectin mRNA levels was a specific response to PooF-BB, not a 

generalized effect on total RNA levels (Fig. 12. 15). 

To explore the interaction between PDGF-BB and IGF-I on fibronectin gene 

expression, the effects of IGF-I on fibronectin mRNA levels were investigated. IGF-I 

produced a 2.5-fold increase of fibronectin mRNA levels at a concentration of 20 nglml 

(Fig. 16. 17). There was no change in total RNA levels at different time points 

suggesting that the fibronectin mRNA response was specific to IGF-I (Fig. IS). 
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To elucidate the possible mechanisms underlying the fibronectin mRNA response 

to PDGF-BB, the effects of actinomycin D and cycloheximide on PDGF-BB induced 

fibronectin mRNA levels were examined. Inhibition of the PDGF-BB induced fibronectin 

mRNA levels by actinomycin D (Fig. 22) suggests that PDGF-BB regulates fibronectin 

mRNA synthesis at the transcriptional level. When fibroblasts were exposed to both 

cycloheximide and PDGF-BB, fibronectin mRNA levels were enhanced even more than 

by IGF-I alone (Fig. 22). It is possible that increased fibronectin mRNA levels could be 

the result of increased rnRNA stability. presumably through the inhibition of the synthesis 

of ribonucleases which degrade the mRNA. It is also possible that cycloheximide could 

block the synthesis or activity of a short lived negative regulator of fibronectin gene 

expression. A superinduction of thrombospondin mRNA and an attenuation of PDGF a 

and B receptor mRNA by cycloheximide were reported (Majack et at. 1987, Eriksson et 

al. 1991). 

Effect of PDOF-BB on Fibronectin Levels 

Fibronectin biosynthesis is influenced by many factors, but fibronectin mRNA is 

the major determinant (Hynes 1990). If PDGF and IGF-I enhance the fibronectin mRNA 

levels, the change in fibronectin mRNA levels should correspond to a change in 

fibronectin levels. The effects of PDGF-BB and IGF-I on fibronectin levels were 

examined. PDGF-BB and IGF-I enhance fibronectin levels in the cell samples and in the 

culture media, respectively. The effects of PDGF-BB and IGF-I on fibronectin levels 

were also dose-dependent. The peak response of fibronectin mRNA induced by PDGF

BB and IOF-I occured at 6-8 hours after PDOF-BB addition (Fig. 10, 11), and the 
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maxima] fibronectin response to PDGF·BB appeared at 8 hours in the cell extracts and 

12 hours in the cell culture medium after PDGF-BB treatment (Fig. 25, 26). The increase 

of intracellular fibronectin in response to PDGF-BB was about 2 hours later than the 

increase of fibronectin mRNA levels suggesting that fibronectin synthesis is a fast 

response. The percent increase in fibronectin mRNA levels (J 20% increase response to 

PDGF-BB and 259% increase response to IGF-I, Fig. II, 17) is much higher than that in 

fibronectin levels (21 % increase response to PDGF-BB in the cell extracts and 20% 

increase in the cell culture medium, 25% increase response to IGF-I in the cell extracts 

and 28% increase in the cell culture medium, Fig. 25, 26, 31, 32). Even fibronectin 

mRNA is one of the major factors which affect fibronectin levels. post-transcriptional 

modifications at the level of protein synthesis, covalent modification, matrix assembly. 

or degradation can also influence fibronectin levels. It is possible that while PDGF-BB 

stimulates fibronectin mRNA levels, it also accelerates other processes which decrease 

fibronectin levels. such as increased fibronectin degradation. decreased post-transcriptional 

modification or translation. Increased incorporation of fibronectin into the matrix by 

TGFB in chick fibroblasts was reported (Ignotz and Massaguo 1986). 

It is interesting to note that fibronectin levels in the cell extracts and cell culture 

medium increase with time in fibroblast cultures grown in serum-free medium (Fig. 25. 

26.3 1.32) in the absence of PDGF-BB and IGF-I, respectively. The above observations 

suggest that other factors in the medium. except serum and exogenous PDGF-BB and 

IGF-I may also influence fibronectin levels. Since fibroblasts are known to produce IGF-I 

and PDGF-Iike molecules (Clemmons et af. 1981a, 1983, 1985b, Paulsson et at. 1987, 

Raines et ai. 1989), it is possible that the increase of fibronectin levels in the serum-free 

85 



cultures is induced by these endogenous growth factors. Some low molecular nutrients 

contained in cell culture medium 199, such as amino acids and vitamins. may also 

influence fibronectin levels by either stimulating synthesis or inhibiting degradation. 

Total protein levels in response to PDGF-BB did not varied significantly in the 

time response experiments. PDGF-BB increase total protein levels in fibroblasts at high 

concentration (40 nglml) (Fig. 30), but the fibronectin increase responded to PDGF-BB 

was detected at much lower concentration (IO nglml in cel1 extracts and 20 nglm] in cell 

culture medium, Fig. 28, 29). No significant increase in total protein levels between the 

IGF-I treated and the untreated groups was detected in both time and dose-experiments . 

These observations suggest that the increase of fibronectin levels in response to IGF-I and 

PDGF-BB (at concentration 20 nglml or less) was a specific response to IGF-I and 

PDGF-BB, not a generalized effect on total protein levels. lncreased total protein levels 

induced by PDGF-BB at high concentration (40 nglml or more) may caused by enhanced 

protein synthesis in the cells or cell proliferation. 

Interaction Between PDOF-BB and [OF-[ 

Since PDGF and IGF-I induce fibronectin mRNA and fibronectin levels in aortic 

fibroblast cultures respectively. it is important to examine whether these two growth 

factors act synergistically in enhancing fibronectin mRNA and fibronectin levels. The 

present studies demonstrate that there was a significant percent increase in fibronectin 

mRNA (276%. Fig. 19.20) in the fibroblasts treated with both PDGF-BB and [OF-[ than 

either PDGF-BB (85%) or [OF-[ (93%) alone. Similarly. there was a significant percent 

increase in cellular fibronectin levels (115%. Fig. 37) in the fibroblasts treated with both 
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PDGF-BB and IGF-I than either PDGF-BB (30%, Fig.37) or IGF-I (33%, Fig. 37) alone. 

The above observation suggest that PDGF-BB and IGF-I act synergistically in fibronectin 

gene expression. It is compatible with reports that PDGF acted additively or 

synergistically with IGF-L For example, PooF and IGF-I have been shown to produce 

a synergistic or additive effect on control of cell growth (Stiles et ai. 1979, Banskota et 

a1. 1989a), induction of DNA synthesis (Pledger et at. 1977, 1978) and expression of the 

protooncogene c-mye, a growth related gene (Banskota et aJ. 1989b). 

The mechanisms underlying the interaction of PDGF-BB and IGF-I are not c lear. 

Pfeifle et al. (1984) demonstrated that 3 hOUfS transient exposure of smooth muscle cells 

to PDGF increases IOF-I receptor expression and enhances smooth muscle cell sensiti vity 

to IOF-I. Later, they found that PDGF increases IOF-I binding to the receptor in a dose 

dependent manner and that PDOF synergises with IOF-I in a smooth muscle cell 

mitogenesis assay (Pfeifle et al. 1987). Bomfeldt et al. (1990) have shown that PDGF 

regulates the expression of the IGF-I as well as that of the IGF-I receptor in cultu red 

vascular smooth muscle cells. 

The present studies demonstrated that PDOF-BB stimulated fibronectin mRNA 

and fibronectin levels in cultured fibroblasts isolated from rat thoracic aorta. The 

functional significance of altered fibronectin expression in vascular fibroblasts is difficult 

to assess at present. Fibronectin has been implicated as one of the early response genes 

that may be rapidly expressed when cells are exposed to certain growth factors that 

initiate cell cycle changes (Blatti el al. 1988). However, despite the multiplicity of 

functions that have been attributed to fibronectin in both physiological and pathological 

87 



processes, it is not possible at present to establish with certainty what role fibronectin bas 

in vascular tissue. The consistent and long-lived increase in aortic fibronectin mRNA 

levels in aging or hypertensive rats suggest a possible role for fibronectin in mediating 

the morphological and functional changes that accompany those conditions, but additional 

studies concerning the localization of fibronectin in aorta and the relative contribution of 

specific isoforms of fibronectin will be necessary to determine if such a role exists. 

These studies also suggest tbat interaction between growth factors and extracellular matrix 

may playa role in the regulation of cell proliferation and extracellular matrix expansion 

which occur in atherosclerosis and hypertension. 
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